扩散语言模型推理太慢?北大团队提出ODB-dLLM框架,破解计算访存双重瓶颈
扩散语言模型推理太慢?北大团队提出ODB-dLLM框架,破解计算访存双重瓶颈基于扩散的大语言模型 (dLLM) 凭借全局解码和双向注意力机制解锁了原生的并行解码和受控生成的潜力,最近吸引了广泛的关注。例如 Fast-dLLM 的现有推理框架通过分块半自回归解码进一步实现了 dLLM 对 KV cache 的支持,挑战了传统自回归 LLMs 的统治地位。
基于扩散的大语言模型 (dLLM) 凭借全局解码和双向注意力机制解锁了原生的并行解码和受控生成的潜力,最近吸引了广泛的关注。例如 Fast-dLLM 的现有推理框架通过分块半自回归解码进一步实现了 dLLM 对 KV cache 的支持,挑战了传统自回归 LLMs 的统治地位。
著名数学家陶哲轩发论文了,除了陶大神,论文作者还包括 Google DeepMind 高级研究工程师 BOGDAN GEORGIEV 等人。论文展示了 AlphaEvolve 如何作为一种工具,自主发现新的数学构造,并推动人们对长期未解数学难题的理解。AlphaEvolve 是谷歌在今年 5 月发布的一项研究,一个由 LLMs 驱动的革命性进化编码智能体。
近年来,以强化学习为核心的训练方法显著提升了大语言模型(Large Language Models, LLMs)的推理能力与对齐性能,尤其在理解人类意图、遵循用户指令以及增强推理能力方面效果突出。尽管现有综述对强化学习增强型 LLMs 进行了概述,但其涵盖范围较为有限,未能全面总结强化学习在 LLMs 全生命周期中的作用机制。
OpenRouter 创立于 2023 年初,给用户提供一个统一的 API Key,用于调用自身接入的所有模型,既包括了市面上的主流基础模型,也包括部分开源模型,一些开源模型还有多个不同的供应商。如果用户选择使用自有的 Key ,也可以同时享受 OpenRouter 的统一接口与其他服务。
近年来,大型语言模型(LLMs)在复杂推理任务中展现出惊人的能力,这在很大程度上得益于过程级奖励模型(PRMs)的赋能。PRMs 作为 LLMs 进行多步推理和决策的关键「幕后功臣」,负责评估推理过程的每一步,以引导模型的学习方向。
但在当今的深度 Transformer LLMs 中仍有其局限性,限制了信息在跨层间的高效传递。 彩云科技与北京邮电大学近期联合提出了一个简单有效的残差连接替代:多路动态稠密连接(MUltiway Dynamic Dense (MUDD) connection),大幅度提高了 Transformer 跨层信息传递的效率。
信息检索能力对提升大语言模型 (LLMs) 的推理表现至关重要,近期研究尝试引入强化学习 (RL) 框架激活 LLMs 主动搜集信息的能力,但现有方法在训练过程中面临两大核心挑战:
近年来,大语言模型 LLMs 在多种任务上的卓越表现已得到广泛认可。然而,要实现其高效部署,精细的超参数优化至关重要。为了探究最佳超参数的规律,我们开展了大规模的实证研究,通过在不同配置上进行网格搜索,我们揭示了一套通用的最优超参数缩放定律(Optimal Hyperparameter Scaling Law)。
当涉及到空间推理任务时,LLMs 的表现却显得力不从心。空间推理不仅要求模型理解复杂的空间关系,还需要结合地理数据和语义信息,生成准确的回答。为了突破这一瓶颈,研究人员推出了 Spatial Retrieval-Augmented Generation (Spatial-RAG)—— 一个革命性的框架,旨在增强 LLMs 在空间推理任务中的能力。
大模型的的发布固然令人欣喜,但是各类测评也是忙坏了众多 AI 工作者。大模型推理的幻觉问题向来是 AI 测评的重灾区,诸如 9.9>9.11 的经典幻觉问题,各大厂家恨不得直接把问题用 if-else 写进来。